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Abstract 

It is shown that, if (a) the gravitational field is represented by the metric tensor of a 
Riemann space, (b) the geodesic hypothesis is admitted, (c) it is assumed that, for a par- 
ticle moving in a scalar gravitational field, this last postulate must give, by approximation, 
the Hamilton principle for this particle in special relativity, then a metric tensor is 
obtained with some interesting properties (no assumptions are made about field equa- 
tions). The geodesic hypothesis, with the Lorentz transformation of this metric tensor, 
~ves, by approximation, the Hamilton principle, with the Lagrangian corresponding in 
special relativity to a particle in a vector field. Moreover, the equations of motion in a 
Riemann space, as they follow from the geodesic postulate, in terms of associated co- 
ordinates, give, by approximation, an expression in complete analogy to that of the Lorentz 
force. Hence, the vector-field theory of gravitation of the MaxweU-Lorentz kind (as 
electrodynamics, because of the formal analogy between the two theories) is obtained as 
a weak field approximation of a description of gravitational (electromagnetic) interaction 
by a metric tensor in a Riemann space (except the field equations, an issue that we do 
not touch, so far). 

Since the formulation of the special theory of relativity, a Lorentz-covariant 
theory of gravitation has been sought by several people, while Einstein, instead, 
founded the general theory of relativity. Nevertheless, investigations have 
continued in order to find a description of gravitational interaction within the 
framework of special relativity, hopefully able to give the same results as those 
given by general relativity for at least the three experimental facts that repre- 
sent the empirical confirmation of Einstein's general theory. In this sense, 
different formulations have been proposed, with scalar, vector, or tensor 
potentials, and combinations thereof, in a manifestly Lorentz-covariant field- 
theoretic context (Robertson and Noonan, 1968). 

Among the theories using a vector potential, one similar to the Maxwell- 
Lorentz electrodynamics has been studied. This theory fails, however, for it 
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gives one sixth the observed value for the precession of the perihelion of 
Mercury (Bergman, 1942). Notwithstanding this fact, investigations have con- 
tinued up to recent years along these fines (Carstoiu, 1969a-c; Leiby, 1972; 
Majernik, 1971, 1972a, b; Spieweck, 1971). 

It is the purpose of  this work to show that this particular vector-field theory 
of gravitation can be obtained as a weak-field approximation of a description 
of  gravitational interaction by means of the metric tensor of  a Riemannian 
space; hence, the same conclusion holds for electrodynamics, because of the 
formal analogy between both theories. We do not dare to say, however, that 
it is an approximation of  some full-fledged theory of gravitatio n in a Riemann- 
Jan space, for we shall not touch on the issue of field equations in the present 
context. In other words, of  the two fundamental postulates of general rela- 
tivity (Synge, 1966; Bunge, 1967), i.e., representation of gravitation by means 
of a Riemannian metric tensor and assumption of a particular system of equa- 
tions of  field, we will use the first but not the second. Besides, we shall admit 
the geodesic hypothesis for a particle moving in a given gravitational field. 

We here recall the equations of  motion in a Riemann space, as they follow 
from the geodesic hypothesis. We also stress the fact that, in the weak-field 
approximation, an expression formally identical to the Lorentz force obtains. 
The fact that one gets a rotational term is well known, which is usually related 
to the Coriolis force. 

It can be shown (Arzelies, 1961) that the equations of motion of a free 
particle in a Riemannian space, in terms of the associated space and time 
coordinates, are 

Dpc~ _ 3 3m 
Dt m-~ (gage v e + icgom) - (go~gev e + icgom) O---f 

mv a 3~ 
+ --~ (go~gev ~ + iegom) ~x ~ -- mv 8 ~ (gag#v ~ + icgo~4) 

mvev 6 3(gfiga) age4 me 2 ag44 
+ + icmv e (1) 

2 Ox e* 3x ~ 2 3x ~ 

where D/Dt denotes the absolute derivative, and where 

p~ = mv~, m =mo ~-1, ga = gc~4/(g44) t/2 

v? c2 ] (2) 

with cg/3, 6 = 1, 2, 3. 
For weak fields, the metric tensor is assumed to be gu = 1 + el. and gq = eqi i 

(i 4=j; i , j  = 1,2, 3, 4), where ~ and qij are functions of the coordinates. Hence, 
we get, after neglecting second-order terms in e, while not assuming any condi- 
tion on the velocity (contrary to Arzelies, 1961) 

e [ age4 D p . _  mc23g,,4 imcagem+imcv k.~X ~ 3go~4~ 
Dt 2 ax ~ at axe] (3) 
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For future reference, we here mention the fact that this result is also valid in 
the case gi] = eaq, when terms of order a + 1 are neglected, with a > 1. 

The right-hand member of  equation (3) is called the force acting on the 
particle. Should the ga4'S be the components of a vector, say g4 (which is not 
in general the case), we could write 

• Og4 rneZ Vg44 - tree Ot  + irncv x (V x g4) F=-~- 
or, with a change of notation, 

aA 
H = - V U - ~  + v x ( V x A )  (4) 

where 
mH = F, VU = ½C2Vg44 

~)A . / ) g 4  
- i c - -  ( u = x , y , z , t )  au au 

Besides the fact that, in general, g~4 is not a vector, there is another diffi- 
culty in establishing an analogy with electrodynamics. When the values ofgi /  
given by the general theory of relativity for the field produced by a particle 
with uniform motion relative to an inertial system are used, one gets a factor 
4 in A( = ieg4), in comparison to that of the Lorentz-covariant theory of the 
Maxwell-Lorentz kind. This result has been interpreted assuming that the 
velocity of the gravitational waves is half that of  the light (Forward, 1961). 

We now study the possibility of having an analogy from the standpoint of 
the variational principle. We shall calculate the components gij of the Riemann- 
Jan metric such that the geodesic hypothesis will give us, by approximation, 
the variational prindple for a particle in a scalar gravitational field in the context 
of the special theory of relativity. We consider the gravitational field of a 
particle at the origin; so that, because of the symmetry of the problem, only 
the diagonal components gii of the metric tensor will be different from zero. 
Moreover, the three spatial components of  the metric will be equal• After- 
wards, we calculate the metric tensor corresponding to the field of  a uniformly 
moving particle; this we do by means of a Lorentz transformation of the initial 
metric tensor. In this way, we succeed in obtaining an expression for the force 
in complete analogy to that of  the Maxwell-Lorentz theory of electrodynamics. 

tn the special theory of relativity, the Lagrangian of a particle in a gravita- 
tional field U is given by 

L = -moc2(1 - •2)1/2 _/7,/0 U (5) 

Hence, the principle of  Hamilton states, in this case, 

6 f [ -moc2(1  - {3z) a/2 - rnoU] dr = 0 (6) 

Since, on the other hand, the geodesic hypothesis in a Riemann space gives, 
for the motion of a fi-ee particle, 

a f d s  = o 
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we must have 

i.e., 
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ds cc [ -  (1 __/32)1/2 __ U/£2]cdt 

[ U2+ 2ff5( 1 fl2)1/2] c2dt2 ds 2cc (1-132 ) +  c- ~ 

Now, assuming/32 ~ el/2 and neglecting terms of  second order in e, while 
keeping those of order 3/2, we get 

(1 ds 2 c~ - ~  

which may be factorized as 

v2\ 2U U c2 | ] e2 dt  2 + C2 C2 

or, with v 2 = (dr /d t )  2 and dx4 = ic d t  

ds2cc 1+ U ~-~ d r 2 +  l+-c-~ dx4 2 (7) 

One can thus obtain a variational principle for a not-too-slow particle (i.e., 
/32 ~ cl/2), in the context of  the special theory of relativity, as an approxi- 
mate result of  the geodesic principle in a Riemann space with the following 
metric tensor (neglecting second-order terms in e): g ~  = t + U/c 2, a = 1, 2, 
3;g44 = 1 + 2U/c2;gij  = O, i ~ j , i , ]  = 1, 2, 3, 4. 

Now, we shall do a Lorentz transformation of  this metric tensor in order 
to get that of  the gravitational field of  a particle with uniform motion (relative 
to the first, assumed inertial, frame of reference). I f  g[/are the components 
o f  the metric tensor in the frame of referenceS',  which is moving with velo- 
city V relative to the initial frame of  reference S, we have 

g;j = aikajZg~l 

But, in this case, g m =  6k~n, hence 

g 'il = a /a/gu 

With our values for the metric tensor, we get 

and, factorizing, 

(5) gij = aic~aj ~ 1 + + ai4a] 4 t + 
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i.e., 

Then, withl3' = V/c and 3' = (1 - fi,2)i/z, the components of  the metric tensor 
are 

, u ~ ) ~  g ~  = 1 + ~  +(iv 

, 

gop = qvG) (i7 

, U ( 9 )  
G4-- (iv&)~,~ 

, U 2 U  
g44 = 1 +~-~ +~ '  ~-~ 

Thus, assuming fl,2 = V2/c 2 ... e and neglecting second-order terms in e, we get 

U 2U 
t I - -  

g a a  = 1 +~-~, g44 = 1 + C2 
(10) 

U P ~ ' f 

g~4 13~ c2, g~p = 0 (o ~ p) 

With these values for the metric tensor one has an expression for the force 
which is identical to that o f  the Maxwell-Lorentz electrodynamics [including 
potentials as those of  Lienard and Wiechert, if the "inverse of  the distance" 

? 

potential is assumed in S; note that in this case gc~4 ~ E3/2 and see remark 
after equation (3)]. 

It can be shown that this metric tensor is compatible with the kagrangian 
associated with a particle in a scalar field U and a vector field A, i.e., with 

L = -moe2(1 - ~2)1/2 _ moU+ mo v . A (11) 

One can do a calculation similar to that already presented, which gives the 
metric tensor from this Lagrangian. If  the field is produced by a particle with 
velocity u = - V ,  we assume [u /c [~  el/2(then IA / c [~  e 3/2, because U/c 2 ~  e), 
j32 = v2/c z ~ e 1/2, as before, and we neglect second-order terms in e (but we 
keep terms of  the order 7/4 in e; this implies that, i fe  ~ 10 -8, as is the case 
of  the solar field in Mercury, there is a difference of  two orders of  magnitude 
between the terms neglected and the smallest terms kept). 

It can also be shown that tiffs metric tensor gives, as an approximation, the 
respective Lagrangian o f  special relativity. The geodesic hypothesis can be 
written (Moller, 1952) 

[ dxldxktl/2 
~5 / l--g/k --~-- ~z-. / d ~ = 0  (12) 

d \ aA aa / 
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Now, since the integrand is an homogeneous function of  first degree in the 
four variables dxi/dX, equation (12) is equivalent to a variational problem with 
only three dependent variables x I and with t as the independent variable 
(Courant and Hitbert, I, p. 196, cited in Moller, 1952). We get, for all varia- 
tions 8x ~ that vanish for t = t~ and t = t> 

~ f F(~', x ', t) at  = o 

The function F = ds/dt must be proportional to the Lagrangian in order for 
the geodesic hypothesis to give Hamilton's principle. Then, we write 

ds 
L (5: l, x l, t) dt = - m o c -  ~ 

or, f rom (2), since ds/dt = oK, 
• V2 / 1/2 

Thus, in associated coordinates, where v 2 = 7aa (dxa/dt) 2 and 3'~ = g ~  - g J &  
we can write 

L = -rno c2 [g44 (1 - - -  

with 

ig ov ]2_g=f: + [dxq2],,  

3 
&2= E; (axe~tit) 2 

O t = l  

Neglecting quadratic terms in ga4, i.e., terms of  order equal to or higher than 
the second in e (but keeping those of  order 7/41 ), we get 

L = - - m ° c 2 (  g44"- 2iga4Vac gaafE2) ,/2 

For our metric tensor, with ga4 = -iAa/c, we have 

L =-moc  2 1+ c2 1 ÷ ~  fie ¢2 

So, reordering and factorizing, we have 

2U 1 1rE2  2Aozv a ]1 /2  
k = - m o  c 2 (1 -& 2 )1 / 2  1+ c2 1--~3F) C2(1--~E2)]  

Approximating the second square root, neglecting terms of  second or higher 
order in e, we get 

Vl- f: _ .  A J  ] 
L = -mo c2 (1 - fe2) 1/2 + c~ (1 - re2) 1/z cZ(1 - ft~2) 1/2] 

1 Remember that in our approximation/3E 2 ~ e 112, U/c 2 me,  and ge~4 ~ e3/2' 
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and again neglecting terms of  second or higher order in e, the following obtains 

L = - too  c2 (1 - ~E2) 1/2 -- moU + m0v.  A 

These results, which give a Lorentz-covariant theory of  m.'.~tion in a gravita- 
tional field, can also be used to give a description of  electrody'namics as a metric 
tensor in a Riemann space (of course, in this case the metric depends on the ratio 
elm of the test particle); clearly, one has the potentials and the Lorentz force, 
but not the field equation. This fact is related to the hypothesis we have used. 
Indeed, we have assumed the geodesic motion and the representation of  the 
field by the metric tensor, but we have not used the Einstein field equations. 
It is perhaps of  some interest to note the fact that here the electromagnetic field 
would be represented by a symmetric tensor, and not necessarily by an anti- 
symmetric one, as is usually assumed. Surely, we are concerned with two differ- 
ent fields: The second one (i.e., the antisymmetric) is the ordinary electro- 
magnetic field, while the symmetric one (which we consider in this paper) is 
the electromagnetic field potential. 

It seems that the analogy which begins with the gravitational law of  Newton 
and Coulomb's law may hopefully be extended to a complete theory in 
Minkowski space and also to a description of  the interaction, gravitational and 
electromagnetic: in a Riemann space. (We do not dare to talk o f  a " theory '~ 
in the latter case because, in this paper, we have not touched on the issue of 
field equations.) 

Finally, we have calculated the advance of  the perihelion of  Mercury for 
this metric tensor. We obtain one third of  the result one gets with the 
Schwarzschild metric. Hence improvement of  the theory is here required 
[for instance along the lines of  Majemik (1962a) and Cote ( t975) ] .  How- 
ever, so far, this description o f  the gravitational field can be applied to all the 
experimental results mentioned by Leiby (1972) and by Majernik (1971), 
since their basic formulas are approximate results of  ours, with the same 
stfitable additional hypothesis (which keeps the analogy with electrodynamics). 
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